test
with an MCP Vizro server agent.test
Room with access to the Vizro toolkit.Tool | Short Description |
---|---|
get_model_json_schema | Get the JSON schema for the specified Vizro model. |
get_sample_data_info | If user provides no data, use this tool to get sample data information. |
get_vizro_chart_or_dashboard_plan | Get instructions for creating a Vizro chart or dashboard. |
load_and_analyze_data | Load data from various file formats into a pandas DataFrame and analyze it. |
validate_chart_code | Validate the chart code created by the user and optionally open in PyCafe. |
validate_model_config | Validate Vizro model configuration. |
get_model_json_schema
model_name
(string
): Name of the Vizro model to get schema for (e.g., ‘Card’, ‘Dashboard’, ‘Page’).get_sample_data_info
iris
: Numerical + 1 categorical, good for scatter, histogram, boxplot, etc.tips
: Mix of numerical and categorical, bar, pie, etc.stocks
: Stock prices, line, scatter, time series.gapminder
: Demographics, line, scatter, maps, or many categories.data_name
(string
): Name of the dataset.get_vizro_chart_or_dashboard_plan
user_plan
(string
)load_and_analyze_data
.csv
, .json
, .html
, .htm
, .xls
, .xlsx
, .ods
, .parquet
path_or_url
(string
): Local file path or URL.validate_chart_code
chart_config
(string
): ChartPlan object with configuration.data_info
(string
): Dataset metadata.auto_open
(boolean
, optional): Open PyCafe in browser.validate_model_config
dashboard_config
(object
): Vizro dashboard configuration (JSON/dict).data_infos
(array
): List of DFMetaData objects.auto_open
(boolean
, optional): Open PyCafe in browser.