Follow these steps to run the MCP Pinecone tool and chatbot inside a Meshagent Room in the cloud for quick testing. When the room closes (e.g., due to inactivity), the MCP server and chatbot are removed automatically.

Environment Variables

  • PINECONE_ASSISTANT_HOST: Your Pinecone Assistant host.
  • PINECONE_API_KEY: Your Pinecone API key.

Steps

  1. Install Meshagent:

    pip install "meshagent[all]"
    
  2. Sign Up & Authenticate: Follow the Meshagent CLI getting started guide.

  3. Start Pinecone MCP Service in a Room:

    meshagent service test \
      --room=test \
      --role=agent \
      --image=meshagent/mcp-pinecone:latest \
      --env MESHAGENT_PORT=8001 \
      --env PINECONE_ASSISTANT_HOST=<YOUR_PINECONE_ASSISTANT_HOST_HERE> \
      --env PINECONE_API_KEY=<YOUR_PINECONE_API_KEY_HERE> \
      --port="num=8001 path=/webhook liveness=/ type=meshagent.callable" \
      --name=mcp-pinecone-service-test
    

    This command will start a Meshagent Room named “test”, running the Pinecone MCP server. The room and its services will close if inactive.

  4. Join a Chatbot with the Toolkit in the Room:

    meshagent chatbot join \
      --room=test \
      --agent-name=mcp-pinecone \
      --name=mcp-pinecone \
      --toolkit=mcp-pinecone
    
    • The chatbot will be able to use Pinecone tools in the room.
    • Room link will be printed in the output for browser-based chat.
  5. Test the Integration:

    • Open the room link from the chatbot join command.
    • Send a message to the agent to interact live with the MCP Server tools.

Project Level Deployment

To make the MCP server tools and a chatbot persistently available in every room of a Meshagent project (ideal for production), deploy as project-level services:

  1. Create Persistent MCP Pinecone Service:

    meshagent service create \
      --role=agent \
      --image=meshagent/mcp-pinecone:latest \
      --env MESHAGENT_PORT=8001 \
      --env PINECONE_ASSISTANT_HOST=<YOUR_PINECONE_ASSISTANT_HOST_HERE> \
      --env PINECONE_API_KEY=<YOUR_PINECONE_API_KEY_HERE> \
      --port="num=8001 path=/webhook liveness=/ type=meshagent.callable" \
      --name=mcp-pinecone-service
    
  2. Create Persistent Chatbot Service with Toolkit:

    meshagent service create \
      --image="meshagent/cli:latest" \
      --port="num=9001 path=/agent liveness=/ type=meshagent.callable participant_name=mcp-pinecone-chatbot" \
      --env="MESHAGENT_PORT=9001" \
      --name="mcp-pinecone-chatbot-service" \
      --command="meshagent chatbot service --agent-name=mcp-pinecone-chatbot --toolkit=mcp-pinecone"
    

These services will join every new room created within your Meshagent project, so your tools and chatbot are always available—no need to run them manually!


Tools Available

assistant_context

Retrieves relevant document snippets from your Pinecone Assistant knowledge base.

Short Description:
assistant_context | Retrieves relevant document snippets from your Pinecone Assistant knowledge base.

Tool Details

assistant_context
Retrieves relevant document snippets from your Pinecone Assistant knowledge base.
Returns an array of text snippets from the most relevant documents.

  • assistant_name (string): Name of an existing Pinecone assistant
  • query (string): The query to retrieve context for.
  • top_k (integer, optional): Number of context snippets to retrieve. Defaults to 15. Recommended: 5-8 for simple/narrow queries, 10-20 for complex/broad topics.

Meshagent & MCP Resources


For more details about MCP servers and Pinecone’s Assistant integration, see Pinecone Assistant MCP Server Repository and this Docker image.

Follow these steps to run the MCP Pinecone tool and chatbot inside a Meshagent Room in the cloud for quick testing. When the room closes (e.g., due to inactivity), the MCP server and chatbot are removed automatically.

Environment Variables

  • PINECONE_ASSISTANT_HOST: Your Pinecone Assistant host.
  • PINECONE_API_KEY: Your Pinecone API key.

Steps

  1. Install Meshagent:

    pip install "meshagent[all]"
    
  2. Sign Up & Authenticate: Follow the Meshagent CLI getting started guide.

  3. Start Pinecone MCP Service in a Room:

    meshagent service test \
      --room=test \
      --role=agent \
      --image=meshagent/mcp-pinecone:latest \
      --env MESHAGENT_PORT=8001 \
      --env PINECONE_ASSISTANT_HOST=<YOUR_PINECONE_ASSISTANT_HOST_HERE> \
      --env PINECONE_API_KEY=<YOUR_PINECONE_API_KEY_HERE> \
      --port="num=8001 path=/webhook liveness=/ type=meshagent.callable" \
      --name=mcp-pinecone-service-test
    

    This command will start a Meshagent Room named “test”, running the Pinecone MCP server. The room and its services will close if inactive.

  4. Join a Chatbot with the Toolkit in the Room:

    meshagent chatbot join \
      --room=test \
      --agent-name=mcp-pinecone \
      --name=mcp-pinecone \
      --toolkit=mcp-pinecone
    
    • The chatbot will be able to use Pinecone tools in the room.
    • Room link will be printed in the output for browser-based chat.
  5. Test the Integration:

    • Open the room link from the chatbot join command.
    • Send a message to the agent to interact live with the MCP Server tools.

Project Level Deployment

To make the MCP server tools and a chatbot persistently available in every room of a Meshagent project (ideal for production), deploy as project-level services:

  1. Create Persistent MCP Pinecone Service:

    meshagent service create \
      --role=agent \
      --image=meshagent/mcp-pinecone:latest \
      --env MESHAGENT_PORT=8001 \
      --env PINECONE_ASSISTANT_HOST=<YOUR_PINECONE_ASSISTANT_HOST_HERE> \
      --env PINECONE_API_KEY=<YOUR_PINECONE_API_KEY_HERE> \
      --port="num=8001 path=/webhook liveness=/ type=meshagent.callable" \
      --name=mcp-pinecone-service
    
  2. Create Persistent Chatbot Service with Toolkit:

    meshagent service create \
      --image="meshagent/cli:latest" \
      --port="num=9001 path=/agent liveness=/ type=meshagent.callable participant_name=mcp-pinecone-chatbot" \
      --env="MESHAGENT_PORT=9001" \
      --name="mcp-pinecone-chatbot-service" \
      --command="meshagent chatbot service --agent-name=mcp-pinecone-chatbot --toolkit=mcp-pinecone"
    

These services will join every new room created within your Meshagent project, so your tools and chatbot are always available—no need to run them manually!


Tools Available

assistant_context

Retrieves relevant document snippets from your Pinecone Assistant knowledge base.

Short Description:
assistant_context | Retrieves relevant document snippets from your Pinecone Assistant knowledge base.

Tool Details

assistant_context
Retrieves relevant document snippets from your Pinecone Assistant knowledge base.
Returns an array of text snippets from the most relevant documents.

  • assistant_name (string): Name of an existing Pinecone assistant
  • query (string): The query to retrieve context for.
  • top_k (integer, optional): Number of context snippets to retrieve. Defaults to 15. Recommended: 5-8 for simple/narrow queries, 10-20 for complex/broad topics.

Meshagent & MCP Resources


For more details about MCP servers and Pinecone’s Assistant integration, see Pinecone Assistant MCP Server Repository and this Docker image.